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Introduction

We consider M a hyperbolic 3-manifold of finite volume.

Hyperbolic:
M ' H3/Γ

Where the holonomy map

ρ : π1(M)
∼−→ Γ

identifies π1(M) with a discrete subgroup

Γ ⊂ (P) SL2(C)

which acts on H3 by isometries.
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Hyperbolic manifolds

We consider M a hyperbolic 3-manifold of finite volume, for
instance

Example (The figure-eight knot)

It follows from Mostow rigidity that the volume of M is a
topological invariant.
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Reidemeister torsion

An other topological invariant is the Reidemeister torsion of the
pair

(M, ρ)

where M is a hyperbolic manifold, and ρ : π1(M)→ SL2(C) its
holonomy.
It refines the cohomological information contained in some
cellular complex

C 0(M, ρ)
d0−→ C 1(M, ρ)

d1−→ C 2(M, ρ)→ . . .

It should be thought as the alternating product of the
”determinants” of the boundary operators di :

tor(M, ρ) =
∏
i

det(di )
(−1)i ∈ C∗
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Torsion and volume

The first natural (informal) question is the following:

Question

Is there a relation between tor(M, ρ) and Vol(M)?

We introduce some notation: the (n − 1)-th symmetric power
Symn−1 denotes the unique irreducible embedding

Symn−1 : SL2(C) ↪→ SLn(C)

induced by the isomorphism

Symn−1(C2) ' Cn

For instance

Symn−1

(
λ 0
0 λ−1

)
=


λn−1

λn−3

. . .
λ3−n

λ1−n
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Asymptotic of torsions

Previous question has been answered positively as follows:

Theorem (Müller ’12 for the compact case,
Menal-Ferrer–Porti ’14 for the general case)

Denote by

ρn : π1(M)
ρ−→ SL2(C)

Symn−1−−−−→ SLn(C)

the (n − 1) symmetric power of the holonomy representation of
a hyperbolic manifold M. The following holds:

lim
n→∞

log | tor(M, ρn)|
n2

=
Vol(M)

4π
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Our motivations

The first question it raises, which is our original motivation, is
the following.

First recall that the holonomy representation ρ is part of a
moduli space of deformations of geometric structures, the
deformation variety, or character variety.
In a few words, despite the holonomy representation
corresponds to the unique (thanks to Mostow rigidity)
complete hyperbolic structure on M, one can deform this
structure into non-complete ones, yielding a moduli space.
Moreover, this character variety is an analytic (even algebraic)
variety, equipped with analytic functions

tor : [%] 7→ tor(M, %)

Vol : [%] 7→ Vol(%)

with Vol(ρ) = Vol(M) when ρ is the holonomy.
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Deformation

A natural question is then:

Question

Can we ”deform” the statement of Müller and
Menal-Ferrer–Porti into:

lim
n→∞

log | tor(M, %n)|
n2

=
Vol(%)

4π

for any % : π1(M)→ SL2(C) close to the holonomy
representation ρ?

It turns out that most of the techniques of their proofs fall
down when % is not the holonomy representation.
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A more affordable first step

To begin with, we consider the following more simple family of
deformations.

Remark

In the sequel we will always assume that b1(M) ≥ 1.

For sake of simplicity, assume that b1(M) = 1. Let m ∈ π1(M)
such that [m] is a generator of H1(M)/(TorH1(M)) ' Z.
Given ζ in the unit circle S1; we denote by χζ : π1(M)→ S1

the homomorphism that sends m to ζ. It induces a new family
of representations

ρn ⊗ χζ : π1(M)→ SLn(C)⊗ S1

γ 7→ ρn(γ)χζ(γ)

We will consider the torsions of the twisted representations
tor(M, ρn ⊗ ζ).
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Twisted Alexander polynomials

There is a family of polynomials ∆n
M(t) ∈ C[t±1], the

ρn-twisted Alexander polynomials, that refine the construction
of the Alexander polynomial for knots (Wada, Lin...)

These topological invariants have a (partially conjectural)
strong detection power.
Our first result is the following:

Theorem (BDHP ’19)

For any ζ on the unit circle S1,

|∆n
M(ζ)| = | tor(M, ρn ⊗ χζ)|.

In particular, the polynomials ∆n
M have no roots on the unit

circle.
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A suggestive computation

Those polynomials satisfy a lot of nice symmetry properties.
Among them, if M → M is a cyclic k-sheeted covering map
then for any t

∆n
M

(t) =
∏
ζk=1

∆n
M(ζt)

Taking the log of the modulus, t=1, k=2

log |∆n
M

(1)| = log |∆n
M(1)|+ log |∆n

M(−1)|

Replacing ∆n
M(1) by tor(M, ρn) and dividing by n2

log | tor(M, ρn)|
n2

=
log | tor(M, ρn)|+ log |∆n

M(−1)|
n2

Taking the limit as n→∞ and applying previous theorem:

2 Vol(M)

4π
=

Vol(M)

4π
+ lim

n→∞

log |∆n
M(−1)|
n2
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Our main theorem

One deduces

lim
n→∞

log |∆n
M(ζ)|

n2
=

Vol(M)

4π

for ζ = −1. In fact, the same trick works as well for ζ root of
order 3, 4, 6... but not more.

Our main result is:

Theorem (BDHP ’19)

For any ζ on the unit circle,

lim
n→∞

log |∆n
M(ζ)|

n2
=

Vol(M)

4π

uniformly in ζ.



Asymptotic of
twisted

polynomials

L. Benard, J.
Dubois, M.

Heusener, J.
Porti

Our main theorem

One deduces

lim
n→∞

log |∆n
M(ζ)|

n2
=

Vol(M)

4π

for ζ = −1. In fact, the same trick works as well for ζ root of
order 3, 4, 6... but not more. Our main result is:

Theorem (BDHP ’19)

For any ζ on the unit circle,

lim
n→∞

log |∆n
M(ζ)|

n2
=

Vol(M)

4π

uniformly in ζ.



Asymptotic of
twisted

polynomials

L. Benard, J.
Dubois, M.

Heusener, J.
Porti

Cheeger–Müller theorem

As we said before, to prove this theorem we need to study the
asymptotic of the Reidemeister torsions tor(M, ρn ⊗ χζ) as n
goes to ∞.

The key ingredient is the following theorem:

Theorem (Cheeger ’77, Müller ’78, ’91, Bismut–Zhang ’91)

Let N be a compact (3-)manifold, % : π1(N)→ GLn(C) a
unimodular representation (i. e. | det ρ(γ)| = 1 for any γ in
π1(N)).
Let T (M,E%) denote the analytic torsion of the flat bundle E%
associated to %. Then

| tor(M, %)| = T (M,E%).
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Idea of the proof: the analytic torsion.

For the proof we assume that M is compact, so that we can
use the Cheeger–Müller theorem: since ρn ⊗ χζ is unimodular,
we are led to consider the sequence of analytic torsions(

T (M,Eρn⊗χζ )
)
n
.

The flat vector bundle Eρn⊗χζ is the quotient
H3 ×ρn⊗χζ Cn of the trivial bundle of rank n on H3 by the
equivalence relation

(x̃ , v) ∼ (γ · x̃ , ρn ⊗ χζ(γ)v)

An Eρn⊗χζ -valued function (or differential form)
f : M → Eρn⊗χζ is a π1(M)-equivariant function
f : H3 → Cn. We denote by Ω∗(M,Eρn⊗χζ ) the complex
of Eρn⊗χζ -valued differential forms on M.
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of Eρn⊗χζ -valued differential forms on M.
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Idea of the proof: the analytic torsion.

For the proof we assume that M is compact, so that we can
use the Cheeger–Müller theorem: since ρn ⊗ χζ is unimodular,
we are led to consider the sequence of analytic torsions(
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)
n
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Idea of the proof: the analytic torsion 2.

Ω0(M,Eρn⊗χζ )
d0 // Ω1(M,Eρn⊗χζ )

d1 // Ω2(M,Eρn⊗χζ )
d2 // . . .

The Laplacian is the operator
∆k = dk−1 d

∗
k−1 + d∗kdk : Ωk(M,Eρn⊗χζ )→ Ωk(M,Eρn⊗χζ ).

Definition

The analytic torsion is defined as

T (M,Eρn⊗χζ ) =
3∏

k=0

(det ∆k)(−1)k k
2 .
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Determinant and trace

But what is the meaning of det ∆ ? The spectrum of the
Laplacian consists of eigenvalues
{0 < λ1 ≤ λ2 ≤ . . . ≤ λm → +∞}. Formally, we write
log det ∆ = Tr log ∆ =

∑
log λm but the latter makes no sense.

First consider the zeta regularisation: the series
∑
λ−sm

converges for the real part of s big enough, and its derivative
at s = 0 formally equals −

∑
log λm. Now use the Mellin

transform: ∫ ∞
0

e−tλts−1dt = λ−sΓ(s)

with Γ(s) the gamma-function (meromorphic, with simple pole
at 0). The candidate for log det ∆ is

− d

ds

(∫∞
0

∑
m e−tλmts−1dt

Γ(s)

)∣∣∣∣
s=0
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The heat operator

We have just seen that to make sense of the determinant of
the Laplace operator det ∆, one needs to study the sum∑

m e−tλm , which is the trace of the heat operator e−t∆ (and
is well-defined for any t > 0).

Denoting (∆n)n for the family of Laplacians acting of forms
valued in the family of bundles

(
Eρn⊗χζ

)
n
, we need to study

the asymptotic behavior of the heat traces of this family as n
goes to infinity.
Since the Laplacians operators are equivariant under the action
of π1(M), we can decompose the heat traces on translated of a
fundamental domain F ⊂ H3 for M:

Tr e−t∆n
=

∑
[γ]∈[π1(M)]

χζ(γ)

∫
F
hnt (x̃ , γ · x̃)
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Ruelle zeta functions

After (many) more computations, one obtains the formula:

logT (M,Eρn⊗χζ ) =
n2 Vol(M)

4π
−

n∑
k=1

∑
[γ] 6=1

log
∣∣∣1− χζ(γ)e−

kλ(γ)
2

∣∣∣
(1)

where λ(γ) is the complex length of γ

i.e. ρ(γ) ∼
(

eλ(γ)/2 0
0 e−λ(γ)/2

)
.

The last series is know as a Ruelle zeta function, and part of
the computations goes through a proof of Fried theorem, which
relates those Ruelle zeta functions with the analytic torsion.
The end of the proof deals with the convergence of the above
sum as n goes to ∞. The delicate points are uniformity of the
convergence.
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To go to the non-compact case, one approximates the
manifold M by a sequence a compact manifolds Mp, and
one needs uniformity in p in (1).

We also want uniformity in ζ.

Dividing by n2 and taking the limit finishes the proof.
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A dynamical application of our first theorem

Assume that M is fibered: M = Σ× [0, 1]/(x , 0) ∼ (φ(x), 1)
for some surface Σ and some diffeomorphism φ : Σ→ Σ, called
the monodromy.

The representation ρn restricts to a representation of π1(Σ),
and the monodromy acts on ρn,Σ by conjugation.
In other words, [ρn,Σ] is a fixed point for the action of φ on the
character variety of Σ.
We prove the following:

Theorem (BDHP’19)

The action of the monodromy φ on [ρn,Σ] has hyperbolic
dynamic. Namely its tangent map has no eigenvalues of
modulus one.
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About the proof

The proof comes from the following well-known fact theorem
(due to Weyl): the tangent space of the character variety X (Σ)
naturally identifies with the first twisted cohomology group

T[ρn,Σ]X (Σ) ' H1(Σ,Ad ◦ρn,Σ)

What we prove is indeed a refinement of the theorem of Weil:

Proposition (BDHP’19)

The tangent map of φ acting on [ρn,Σ] has characteristic
polynomial equal to the twisted Alexander polynomial.

We conclude with our first theorem.
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An application of the main theorem.

We define the Mahler measure of a polynomial P as

m(P) =
1

2π

∫ 1

0
log |P(e iθ)|dθ.

Jensen’s formula relates the Mahler measure with the roots
of P:

m(P) =
∑

P(ζ)=0
|ζ|>1

log |ζ|

We obtain

Theorem (BDHP’19)

lim
n→∞

m(∆n
M)

n2
=

Vol(M)

4π
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Thank you!


