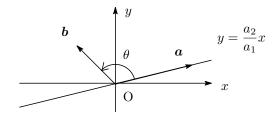
2次の行列式の符号

2次の行列式の符号に関する第1章の命題 1.53 (p.18) を証明しよう.

(命題 1.53 の証明). \boldsymbol{a} , \boldsymbol{b} の始点を原点にとり, $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$, $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ とする.

まず $a_1>0$ のときを考える. a から b への角 θ が 0° $<\theta(<1\hat{8}0^\circ)$ となるのは、ベクトル a と b は平行でない $oldsymbol{b}$ が座標平面上の領域 $y>rac{a_2}{a_1}x$ にあることと同値である.

ので $\theta \neq 180^{\circ}$ であ る.



このとき, $b_2 > \frac{a_2}{a_1}b_1$ ゆえ $a_1b_2 - a_2b_1 > 0$, すなわち $\det(\boldsymbol{a} \ \boldsymbol{b}) > 0$ となる.

次に $a_1<0$ のときを考える. $\theta>0^\circ$ となるのは,ベクトル ${m b}$ が座標平面上の領域 $y<\frac{a_2}{a_1}x$ 次に $a_1 < 0$ のこことですため、 $a_1 < 0$ なので、 $a_1 b_2 - a_2 b_1 > 0$ 、すなわち $a_1 < 0$ なので、 $a_1 b_2 - a_2 b_1 > 0$ 、すなわち $a_1 < 0$ なので、 $a_2 + (a_1 b_1) < 0$ となる

最後に、 $a_1=0$ のときを考える. $a_2>0$ のとき、 $\theta>0^\circ$ は $b_1<0$ と同値、 $a_2<0$ のとき、 $\theta>0^\circ$ は $b_1>0$ と同値であることがわかる. 従って、いずれの場合も $a_2b_1<0$ 、すなわち $\det(\mathbf{a} \mathbf{b}) > 0 \ \text{$ \ \mathcal{b} } \delta.$

命題 1.49 (p.17) と命題 1.53 (p.18) から,次の系が直ちに従う.

系 1. a,b を平行でない平面ベクトルとし,a から b への角を θ ($-180^{\circ} < \theta \le 180^{\circ}$) とする. このとき、a,bの張る平行四辺形の面積Sは

$$S = \begin{cases} \det(\mathbf{a} \ \mathbf{b}) & (\theta > 0) \\ -\det(\mathbf{a} \ \mathbf{b}) & (\theta < 0) \end{cases}$$

となる.