行列の転置

 $m \times n$ 行列 A に対して、その行と列を入れ換えて得られる $n \times m$ 行列を A の転置行列とよび、 tA と表すのであった. (第 4 章, 定義 4.79 を参照.)

例 1.
$$(1)$$
 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ のとき, ${}^t\!A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ である.

$$(2) \ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 のとき, ${}^t \! A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$ である.

命題 2. 転置行列について、次の性質が成り立つ.

- (1) (${}^{t}A$ の (i,j) 成分) = (A の (j,i) 成分) である.
- (2) 任意の行列 A に対して, t(tA) = A である.
- (3) 行列 $A \, \mathsf{E} \, B$ の積 AB が定義されるとき, ${}^t\!(AB) = {}^t\!B{}^t\!A$ である.
- (4) A が正則行列であるとき, tA は正則行列であり, $({}^tA)^{-1}={}^t(A^{-1})$ である.

(証明). 性質 (1) と (2) は転置行列の定義から直ちに従う. 性質 (3) を示そう. $A=(a_{ij})$ を $m\times n$ 行列, $B=(b_{jk})$ を $n\times l$ 行列とする. まず, t(AB) と tB^tA のサイズが同じであることを 確認する. AB は $m\times l$ 行列だから, t(AB) は $l\times m$ 行列である. 一方, tB は $l\times m$ 行列で tA は $l\times m$ 行列である. よって, t(AB) と tB^tA のサイズは同じである. 次に, t(AB) と tB^tA の (i,j) 成分同士が等しいことを示す. まず性質 (1) より,

$${}^{t}(AB)$$
 の (i,j) 成分 = AB の (j,i) 成分 = $\sum_{k=1}^{n} a_{jk} b_{ki}$ (1.1)

である. 次に、 $^tB^tA$ の (i,j) 成分は tB の第 i 行と tA の第 j 列の対応する成分の積の和であるが、転置行列の定義から、これは B の第 i 列と A の第 j 行の成分の積の和となる. よって、

$${}^{t}B^{t}A \mathcal{O}(i,j)$$
 成分 =
$$\sum_{k=1}^{n} b_{ki} a_{jk}$$
 (1.2)

である. (1.1) と (1.2) を比べると、両者は等しい. 以上より、 ${}^t\!(AB)={}^t\!B{}^t\!A$ である.

性質 (4) は性質 (3) を用いて次のように示せる. A を n 次正則行列とし, $B = A^{-1}$ とすると,

$$AB = I_n, \qquad BA = I_n$$

である.この2式の両辺の転置をとると、

$${}^{t}(AB) = {}^{t}I_{n}, \qquad {}^{t}(BA) = {}^{t}I_{n}$$

 ${}^tI_n = I_n$ であることに注意して性質 (3) を用いると,

$${}^tB^tA = I_n, \qquad {}^tA^tB = I_n$$

である. すなわち、 tA は正則行列であり、 ${}^tB={}^t(A^{-1})$ が tA の逆行列である.